- Energy and Flux of neutrinos from various sources.
 - The SUN! below 0.5 MeV $10^{11}cm^{-2}s^{-1}$ at $\sim 3\text{-}14$ MeV $3 \times 10^6 cm^{-2}s^{-1}$
 - Cosmic rays hitting the atmosphere at $1 \text{ GeV} \sim 5000 m^{-2} s^{-1}$
 - From radioactive decays in the Earth $10^6 10^7 cm^{-2} s^{-1} < 3$ MeV from U/Th decays.

- SuperNova neutrinos. 11 were seen in 1987 in two large

- detectors. — Microwave background neutrinos. Very cold 2.7^o ! $300cm^{-3}$
- Microwave background neutrinos. Very cold 2.7°! 300cm⁻¹ Multiply by velocity to get flux.
- Nuclear reactors. $10^{13} 10^{15} cm^{-2} s^{-1} \le 5$ MeV. Falls as $1/r^2$ with distance from reactor.
 - Accelerators. $5 \times 10^{-5}/m^2$ per proton (E ~ 1 GeV) at 1 km.